If x=a(cos t+log tant2),y=a sin t, then show that dydx=tan t .
dxdt=a[−sin t+1/tant2sec2t212]=a[−sin t+1sin t]a[cos2tsin t]dydt=a cos t∴ dydx=tan t
Find dydx,x=a(cost+logtant2),y=asint