If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find dydxat t=π4.
x=asin2t(1+cos2t),y=bcos2t(1–cos2t)dydx=2acos2t(1cos2t)+asin2t(−2sin2t)=2acos2t+2acos22t−2asin22t=2acos2t+2acos4tdydx=−2bsin2t(1−cos2t)+bcos2t(2sin2t)=−2bsin2t+2bsin2tcos2t+2bcos2tsin2t(2sin2t)=−2bsin2t+4bsin2tcos2t=−2bsin2t+2bsin4t dydtdxdt=−2b sin 2t+2b sin 4t2a cos 2t+2a cos 4t⇒dydt=−2b sin 2t+2b sin 4t2a cos 2t+2a cos 4t⇒∣∣dydt∣∣t=π4=−2b sin2π4+2b sin 4π42a cos2π4+2a cos4π4⇒∣∣dydt∣∣t=π4=−2b sinπ4+2b sin π2a cos π2+2a cosπ⇒∣∣dydt∣∣t=π4=−2b−2a=ba∴⇒∣∣dydt∣∣t=π4=ba