Here x = a sin pt, y = b cos pt
Differentiating w.r.t. t,
dxdt = ap cos pt,dydt=−bp sin pt ⇒dydx=−batan pt
On differentiating w.r.t. x, we get :d2ydx2=−bp sec2 pta×dtdx
⇒d2ydx2=−bp sec2 pta×1ap cos pt=−ba2×1cos2 pt×1cos pt
⇒d2ydx2=−ba2×11−sin2 pt×by ⇒d2ydx2=−ba2×11−x2a2×by
⇒d2ydx2=−ba2−x2×by ⇒(a2−x2)yd2ydx2=−b2
∴ (a2−x2)yd2ydx2+b2=0.