If x=asinθ and y=bcosθ, then d2y/dx2 is:
(a/b2)sec2θ
-(b/a)sec2θ
-(b/a2)sec3θ
(b2/a2)sec3θ
Explanation for the correct option.
Step 1: Differentiate xandy w.r.t θ
x=asinθ⇒dxdθ=acosθ
y=bcosθ⇒dydθ=-bsinθ
Step 2: Finddydxandd2ydx2
dydx=dydθ×dθdx=-bsinθacosθ=-batanθ
d2ydx2=ddθdydx×dθdx=ddθ-batanθ1asecθ=-basec2θ1asecθ=-ba2sec3θ
Hence, option C is correct.
find (d2y/dx2)if x=a(theta+sin(theta))
,y=a(1-cos(theta))