If xa=xb2zb2=zc, then prove that 1a,1b,1c are in A.P.
Here, xa=(xz)b2=zc
Now, taking log on both the sides:
log(x)a=log(xz)b2=log(z)c
⇒a log x=b2log(xz)=c log z
⇒a log x=b2 log x+b2 log z=c log z
⇒a log x=b2 log x+b2 log z and b2 log
x+b2 logz=c log z
⇒(a−b2)log x=b2log z and b2 log x = (c−b2) log z
⇒log xlog z=b2(a−b2) and \frac{log~x}{log~z} = \frac{\left(c - \frac{b}{2}\right)}{\frac{b}{2}}\)
⇒b2(a−b2)=(c−b2)b2
⇒b2(a−b2)=(c−b2)b2
⇒b24=ac−ab2−bc2+b24
⇒2ac=ab+bc
⇒2b=1a+1c
Thus, 1a,1b and 1c are in A.P.