Using the identity:(a+b)3=a3+b3+3a2b+3ab2
Given: (x+1x)3
Now,
(x+1x)3=(x)3+(1x)3+(3×(x)2×1x)+(3×x×(1x)2)=x3+1x3+3x+(3×x×1x2)=x3+1x3+3x+3x
Thus, (x+1x)3=x3+1x3+3x+3x.
It is given that x+1x=3, therefore,
(x+1x)3=x3+1x3+3x+3x⇒(x+1x)3=x3+1x3+3(x+1x)⇒(3)3=x3+1x3+3(3)⇒27=x3+1x3+9⇒x3+1x3=27−9⇒x3+1x3=18
Hence, x3+1x3=18.