If x=cos10°cos20°cos40°, then the value of x is:
14tan10°
18cot10°
18cosec10°
18sec10°
Explanation for the correct option.
x=cos10°cos20°cos40°=cos10°cos2×10°cos22×10°=sin23×10°23sin10°[∵cosA·cos(2A)·.....·cos(2n-1A)=sin(2nA)2nsinA]=sin80°8sin10°=sin90°-10°8sin10°=cos10°8sin10°[∵sin90°-θ=cosθ]=18cot10°
Hence, option B is correct.