The correct option is A 194
Given,
x+1x=4
Taking square on both sides,
(x+1x)2=43
Using Identity,
(a+b)2=a2+2ab+b2
∴(x+1x)2=x2+2×x×1x+
(1x)2=16
x2+1x2=16−2
∴x2+1x2=14
Again, taking square on both sides,
(x2+1x2)2=142
∴(x2+1x2)2=(x2)2+2×x2×
1x2+(1x2)2=196
x4+2+1x4=196
x4+1x4=196−2
∴x4+1x4=194
Correct Option is b.