The correct option is
C (x+y+z)3=27xyzRecall the formula,
a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−(ab+bc+ca)).
Lets substitute the values of x,y,z as follows,
x=a3,y=b3,z=c3.
So now,
x13+y13+z13=a+b+c=0.
Using the formula above we can say that,
if a+b+c=0⇒a3+b3+c3=3abc.
Substituting back, we get x+y+z=3x1/3y1/3z1/3.
Cubing both sides we get, (x+y+z)3=27xyz.
Therefore, option C is correct.