If x + 1x = 2cosθ, then x3 + 1x3 =
cos3θ
2cos3θ
12cos3θ
13cos3θ
We have x + 1x = 2cosθ,
Now x3 + 1x3 = (x+1x)3 - 3x1x(x+1x)
= (2cosθ)3−3(2cosθ)=8cos3θ−6cosθ
=2(4cos3θ−3cosθ)=2cos3θ.
Trick: Put x = 1 ⇒ θ=0∘.
Then x3 + 1x3 = 2 = 2cos3θ.
[MP PET 2004]