If x−1x=3+2√2, find the value of x3−1x3.
x−1x=3+2√2
Cubing both sides,
(x−1x)3=(3+2√2)3
⇒ x3−1x3−3(x−1x)=(3)3+(2√2)3+3×3×2√2(3+2√2)
⇒x3−1x3−3×(3+2√2)=27+16√2+18√2(3+2√2)
⇒x3−1x3−3×(3+2√2)=27+16√2+54√2+72
⇒x3+1x3−3(3+2√2)=99+70√2
⇒x3+1x3=99+70√2+3(3+2√2)
=99+70√2+9+6√2
=108+76√2