If x=23+√7, then (x−3)2=
1
3
6
7
x=23+√7=2(3−√7)(3+√7)(3−√7)
(Rationalising the denominator)
=2(3−√7)(3)2−(√7)2=2(3−√7)9−7
=2(3−√7)2=3−√7
Now, x−3=3−√7−3=−√7
∴ (x−3)2=(−√7)2=7
Choose the constant term in the expression "x4 - 6x2 + 2x - 3".
The degree of the polynomial obtained when 8−6x+x2−7x3+x5 is subtracted from x4−6x3+x2−3x+1 is