If x=√3+12, find the value of 4x3+2x2−8x+7.
x=√3+12⇒2x=√3+1
⇒2x−1=√3
Squaring both sides.
(2x−1)2=(√3)2⇒4x2−4x+1=3
4x2−4x+1−3=0⇒4x2−4x−2=0
∴ 2x2−2x−1=0
Now, 4x3+2x2−8x+7
=(4x3−4x2−2x)+(6x2−6x−3)+10
=2x(2x2−2x−1)+3(2x2−2x−1)+10
=2x×0+3×0+10
=0+0+10=10