The correct option is B [−1,1]
Given : f(x)=sin√2x2+4x+3
For domain,
2x2+4x+3≥0
⇒2(x2+2x+32)≥0
⇒2((x+1)2+12)≥0 which is true for all real x.
∴ Domain of f is R
Let y=2x2+4x+3
⇒y∈[1,∞)
⇒√y∈[1,∞)
We know, sing(x) is periodic with period 2π
⇒−1≤sinx≤1 for x∈[a,a+kπ],a∈R and k≥2
∴ Range of f(x) is [−1,1]