If x is real and k =x2−x+1x2+x+1, then
k∈[13,3]
k=x2−x+1x2+x+1
⇒kx2+kx+k=x2−x+1
⇒(k−1)x2+(k+1)x+k=k−1=0
For real values of x, the discriminant of (k−1)x2+(k+1)x+k−1=0 should be greater than or equal to zero.
∴ if k ≠ 1
(k+1)2−4(k−1)(k−1)≥0
⇒(k+1)2−2(k−1)2≥0
⇒(k+1+2k−2)(k+1−2k+2)≥0
⇒(3k−1)(−k+3)≥0
⇒(3k−1)(k−3)≤0
⇒13≤k≤3 i.e.k∈[13,3]{1}...(i)
And if k = 1, then, x = 0, which is real ...(ii) So, from (i) and (ii), we get k∈[13,3]