1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Algebra of Complex Numbers
If x + iy5 ...
Question
If
(
x
+
i
y
)
5
=
p
+
i
q
,
then prove that
(
y
+
i
x
)
5
=
q
+
i
p
.
Open in App
Solution
(
x
+
i
y
)
5
=
p
+
i
q
or
¯
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
¯
(
x
+
i
y
)
5
=
¯
¯¯¯¯¯¯¯¯¯¯¯¯
¯
p
+
i
q
or
¯
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
¯
(
x
+
i
y
)
5
=
p
−
i
q
or
(
x
−
i
y
)
5
=
p
−
i
q
or
i
5
(
x
−
i
y
)
5
=
p
i
5
−
i
6
q
or
(
x
i
−
i
2
y
)
5
=
p
i
+
q
or
(
y
+
i
x
)
5
=
p
i
+
q
Ans: 1
Suggest Corrections
0
Similar questions
Q.
If
(
x
+
i
y
)
5
=
p
+
i
q
, then the value of
2
(
y
+
i
x
)
5
q
+
i
p
is
Q.
If
(
x
+
i
y
)
5
=
p
+
i
q
, then the value of
2
(
y
+
i
x
)
5
q
+
i
p
is
Q.
If
(
x
+
i
y
)
(
p
+
i
q
)
=
(
x
2
+
y
2
)
i
, prove that
x
=
q
,
y
=
p
.
Q.
Let
z
1
=
a
+
i
b
,
z
2
=
p
+
i
q
be two unimodular complex numbers such that
I
m
(
z
1
z
2
)
=
1
. If
ω
1
=
a
+
i
p
,
ω
2
=
b
+
i
q
then
Q.
In the given figure, the bisectors of
∠B and ∠C of ∆ABC meet at I. If IP ⊥ BC, IQ ⊥ CA and IR ⊥ AB, prove that (i) IP = IQ = IR, (ii) IA bisects ∠A.