If X={4n−3n−1:n∈N} and Y={9(n−1):n∈N}, then show that X∩Y=X.
We have, X={4n−3n−1:n∈N}
Since, 4n−3n−1=(1+3)n−3n−1
= {1+nC13+nC232+nC333+...+nCn3n}−3n−1
[∵ (1+x)n=1+nC1x+nC2s2 +...+nCnxn]
= 1+3n+nC232+nC333 +...+nCn3n−3n−1 [1]
[∵ nC1=n]
= nC232+nC333 +...+nCn3n
= 32[nC2+nC3.3+nC432 +...+nCn3n−2]
= 9[nC2+nC3.3+nC4.32 +...+nCn3n−2]
∴ 4n−3n−1 is a multiple of 9 for n≥2.
For n=1, 4n−3n−1=4−3−1=0
∴ 4n−3n−1 is a multiple of 9,∀ n∈N.
∴ X contains elements, which are multiple of 9 and clearly Y contains all multiple of 9.
∴ x⊆Y, i.e.X∩Y=X Hence proved.