If xlog3x2+(log3x)2−10=1x2, then number of value(s) of x satisfying the equation is/are
Open in App
Solution
xlog3x2+(log3x)2−10=1x2 ⇒x2log3x+(log3x)2−8=1(x≠0) ⇒2log3x+(log3x)2−8=0 or x=1 Now, for 2log3x+(log3x)2−8=0 Letlog3x=t ⇒t2+2t−8=0⇒(t−2)(t+4)=0 ⇒t=2,−4 ⇒log3x=2 or log3x=−4 ⇒x=9 or x=181 ∴x=181,1,9