wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If xm.yn=(x+y)m+n, then dydx is :

A
y2x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2yx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
yx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
yx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is B yx

We have,

xmyn=(x+y)m+n

On differentiating both sides w.r.t x, we get

yn(mxm1)+xm(nyn1dydx)=(m+n)(x+y)m+n1(1+dydx)

mxmynx+nxmynydydx=(m+n)(x+y)m+n(x+y)(1+dydx)

xmyn(mx+nydydx)=(m+n)(x+y)m+n(x+y)(1+dydx)

(mx+nydydx)=(m+n)(x+y)(1+dydx)

mx+nydydx=(m+n)(x+y)+(m+n)(x+y)dydx

mx(m+n)(x+y)=((m+n)(x+y)ny)dydx

mx(m+n)(x+y)=((m+n)(x+y)ny)dydx

mx+mymxnxx(x+y)=(my+nynxnyy(x+y))dydx

mynxx(x+y)=(mynx(x+y)y)dydx

1x=1ydydx

dydx=yx

Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon