If xm.yn=(x+y)m+n, then dydx is :
We have,
xmyn=(x+y)m+n
On differentiating both sides w.r.t x, we get
yn(mxm−1)+xm(nyn−1dydx)=(m+n)(x+y)m+n−1(1+dydx)
mxmynx+nxmynydydx=(m+n)(x+y)m+n(x+y)(1+dydx)
xmyn(mx+nydydx)=(m+n)(x+y)m+n(x+y)(1+dydx)
(mx+nydydx)=(m+n)(x+y)(1+dydx)
mx+nydydx=(m+n)(x+y)+(m+n)(x+y)dydx
mx−(m+n)(x+y)=((m+n)(x+y)−ny)dydx
mx−(m+n)(x+y)=((m+n)(x+y)−ny)dydx
mx+my−mx−nxx(x+y)=(my+ny−nx−nyy(x+y))dydx
my−nxx(x+y)=(my−nx(x+y)y)dydx
1x=1ydydx
dydx=yx
Hence, this is the answer.