If xn=cosπ3n+isinπ3n, then x1.x2.x3.... equal to
xn=cosπ3n+isinπ3nxn=eiπ3n⇒x1x2x3...=eiπ31eiπ32eiπ33....⇒x1x2x3=ei(π31+π32+π32........)
Now π31+π32+π32....... is an infinite G.P. with a=π3 and r=13
sum of infinte G.P =a1−r=π311−13=π2
⇒x1x2x3.....=ei(π2)⇒x1x2x3......=cosπ2+isinπ2⇒x1x2x3......=i
So option C is correct.