If x=√(p+q)+√(p−q)÷[√(p+q)−√(p−q)] then find the value of qx2−2px+q
x=√(p+q)+√(p−q)÷[√(p+q)−√(p−q)]
On rationalizing, we get
x=√(p+q)+√(p−q)√(p+q)−√(p−q)×√(p+q)+√(p−q)√(p+q)+√(p−q)
Using the identities, (a+b)2=a2+b2+2ab&(a+b)(a−b)=(a2−b2)
x=[√(p+q)+√(p−q)]2[√p+q]2−[√p−q]2
x=[√(p+q)]2+[√(p−q)]2+[2×√(p+q)√(p−q)](p+q)−(p−q)
x=[(p+q)+(p−q)+2√(p2−q2)]p+q−p+q
x=[2p+2√(p2−q2)]2q
x=2[p+√(p2−q2)]2q
x=[p+√(p2−q2)]q
qx=p+√(p2−q2)
qx−p=√(p2−q2)
on squaring both sides, we get
⇒q2x2+p2−2pqx=p2−q2
⇒q2x2−2pqx+q2=0
⇒q(qx2−2px+q)=0
∴qx2−2px+q=0
Hence, the value of qx2−2px+q=0