If x=sin−1K, y=cos−1K, −1≤K≤1, then the correct relationship is-
If sin−1x+sin−1y+sin−1z=π then x4+y4+z4+4x2y2z2=k(x2y2+y2z2+z2x2) where k is equal to
Find the real part of ((x+iy)+i(x+iy)+2) Take (|(x+2)+iy|) =√1k