if X sin^3A + Y cos^3A = (sinA)(cosA) and X sinA = Y cosA , prove that X^2 + Y^2 = 1
Open in App
Solution
We know XsinA=YcosA....(1) and Xsin³A+Ycos³A=sinAcosA or XsinA×sin²A+Ycos³A=sinAcosA substituting....(1) we get, YcosA×sin²A+Ycos³A=sinAcosA YcosA(sin²A+cos²A)= sinAcosA i.e. Ycos A=sinAcosA (sin²A+cos²A=1) so Y=sinA....(3) substituting (3) in (1) XsinA=sinAcosA so X=cosA....(4)