If x=sinθ,y=cospθ, and m(1−x2)y2−xy1+p2y=0, where y2=d2ydx2 and y1=dydx Find m
Open in App
Solution
We have, x=sinθ,y=cospθ dxdθ=cosx=√1−x2,dydθ=−psinpθ=−p√1−y2 ∴dydx=y1=−p√1−y2√1−x2 ⇒y21=p2(1−y2)(1−x2)⇒y21(1−x2)=p2(1−y2) Again differentiating both side w.r.t x (1−x2)2y1y2−2y1x=−2p2y1⇒(1−x2)y2−xy1+p2y=0