If x=t2, y=t3, then d2ydx2 equals to ?
32
34t
32t
3t2
Explanation of the correct answer:
It is given that, x=t2 and y=t3.
dxdt=2t
Now,
dydt=3t2⇒dydx=dydtdxdt⇒dydx=3t22t∵dxdt=2t⇒dydx=3t2⇒d2ydx2=32×dtdx⇒d2ydx2=32×12t⇒d2ydx2=34t
Hence, Option B is correct.