If xx+xy+yx=ab , then find dydx.
xx+xy+yx=ab...........(i)Let u=xxlog u=x log x1u.dudx=x.1x+log x∴dudx=xx(1+logx)Let v=xylog v=y log x1v.dvdx=(yx+log xdydx)∴dvdx=xy(yx+log xdydx)
Let w=yxLog w=x log y1w.dwdx=(xydydx+log y)
∴dwdx=yx(xydydx+log y)
(i) can be written as
u+v+w=abdudx+dvdx+dwdx=0⇒xx(1+log x)+xy(yx+log xdydx)+yx(xydydx+log y)=0⇒xx+xx log x+xy.yx+xy.log x.dydx+yx.xydydx+yx log y=0⇒dydx(xy.log x+yx.xy)=xx+xxlog x+xy.yx+yxlog y⇒dydx(xy.log x+xyx−1)=(xx+xx log x+)∴dydx(xx+xx log x+yxy−1+yxlog y)(xy.log x+xyx−1).