wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If xx+xy+yx=ab , then find dydx.

Open in App
Solution

xx+xy+yx=ab...........(i)Let u=xxlog u=x log x1u.dudx=x.1x+log xdudx=xx(1+logx)Let v=xylog v=y log x1v.dvdx=(yx+log xdydx)dvdx=xy(yx+log xdydx)

Let w=yxLog w=x log y1w.dwdx=(xydydx+log y)

dwdx=yx(xydydx+log y)

(i) can be written as

u+v+w=abdudx+dvdx+dwdx=0xx(1+log x)+xy(yx+log xdydx)+yx(xydydx+log y)=0xx+xx log x+xy.yx+xy.log x.dydx+yx.xydydx+yx log y=0dydx(xy.log x+yx.xy)=xx+xxlog x+xy.yx+yxlog ydydx(xy.log x+xyx1)=(xx+xx log x+)dydx(xx+xx log x+yxy1+yxlog y)(xy.log x+xyx1).


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon