We have,
xy=ex−y
Taking log both side and we get,
logxy=logex−y
⇒ylogx=(x−y)loge
⇒ylogx=x−y
On differentiation and we get,
y1x+logxdydx=1−dydx
⇒logxdydx+dydx=1−yx
⇒(logx+1)dydx=x−yx
⇒dydx=x−yx(logx+1)
Hence, this is the answer.