If x+y+z=1, then 1-3x2-3y2-3z2+2x3+2y3+2z3 is equal to:
6xyz
3xyz
2xyz
xyz
Solution:
Simplify the given expression:
Given: x+y+z=1
1-3x2-3y2-3z2+2x3+2y3+2z3=1-3x2-3y2-3z2+2x3+y3+z3=1-3x2-3y2-3z2+2x+y+zx2+y2+z2-xy-yz-zx+3xyz[∵a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)]=1-3x2-3y2-3z2+2x2+y2+z2-xy-yz-zx+3xyz(∵x+y+z=1)=1-x2-y2-z2-2xy-2yz-2zx+6xyz=1-x+y+z2+6xyz(∵(a+b)2=a2+b2+2ab)=1-(1)2+6xyz=6xyz
Final answer: Hence, Option (A) is the correct answer.