wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x+y=z, then prove that 1+cosx+cosy+cosz=4cos(x2)cos(y2)cos(z2).

Open in App
Solution

We have,

x+y=z ……… (1)

Now,

1+cosx+cosy+cosz

(1+cosz)+(cosx+cosy)

We know that

cosC+cosD=2cos(C+D2)cos(CD2)

cosx=2cos2x21

Therefore,

2cos2z2+2cos(x+y2)cos(xy2)

2cos2z2+2cos(z2)cos(xy2)[eqn(1)]

2cosz2[cosz2+cos(xy2)]

2cosz2⎢ ⎢ ⎢2cos⎜ ⎜ ⎜z2+xy22⎟ ⎟ ⎟cos⎜ ⎜ ⎜z2xy22⎟ ⎟ ⎟⎥ ⎥ ⎥

2cosz2[2cos(x+zy4)cos(y+zx4)]

2cosz2[2cos(x+x+zy4)cos(y+x+yx4)]

2cosz2[2cos(2x4)cos(2y4)]

4cos(x2)cos(y2)cos(z2)

Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon