We have,
x+y=z ……… (1)
Now,
1+cosx+cosy+cosz
⇒(1+cosz)+(cosx+cosy)
We know that
cosC+cosD=2cos(C+D2)⋅cos(C−D2)
cosx=2cos2x2−1
Therefore,
⇒2cos2z2+2cos(x+y2)⋅cos(x−y2)
⇒2cos2z2+2cos(z2)⋅cos(x−y2)[eqn(1)]
⇒2cosz2[cosz2+cos(x−y2)]
⇒2cosz2⎡⎢ ⎢ ⎢⎣2cos⎛⎜ ⎜ ⎜⎝z2+x−y22⎞⎟ ⎟ ⎟⎠⋅cos⎛⎜ ⎜ ⎜⎝z2−x−y22⎞⎟ ⎟ ⎟⎠⎤⎥ ⎥ ⎥⎦
⇒2cosz2[2cos(x+z−y4)⋅cos(y+z−x4)]
⇒2cosz2[2cos(x+x+z−y4)⋅cos(y+x+y−x4)]
⇒2cosz2[2cos(2x4)⋅cos(2y4)]
⇒4cos(x2)⋅cos(y2)⋅cos(z2)
Hence, this is the answer.