If x2/3+y2/3=a2/3, then dydx=
y313
-yx13
xy13
-xy13
Explanation for the correct option:
Differentiation of given expression:
x2/3+y2/3=a2/3
Differentiating w.r.t x, we get
dx23dx+dy23dx=da23dx⇒2x-133+dy23dy×dydx=0[∵ddxxn=nxn-1]⇒23x-13+23y-13×dydx=0⇒1x13+1y13×dydx=0⇒1y13×dydx=-1x13⇒dydx=-yx13
Hence, option B is correct.