The correct option is E y2−1
Given, xexy+ye−xy=sin2x
On differentiating w.r.t. x, we get
exy+xexy{xdydx+y}+dydxe−xy
−ye−xy{xdydx+y}=2sinx⋅cosx
⇒{x2exy+e−xy−xeye−xy}dydx+{exy+xyexy−y2e−xy}=sin2x
On putting x=0, we get
{0+e−0−0}(dydx)(x=0)+{e0+0−y2e−0}=sin0
⇒[(1)dydx]x=0+(1−y2)=0
⇒[dydx]x=0=y2−1.