wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Ifxy+yz+zx=1, prove that x1x2+y1y2+z1z2=4xyz(1x2)(1y2)(1z2).

Open in App
Solution

Consider the given expression.

x1x2+y1y2+z1z2=4xyz(1x2)(1y2)(1z2)

x(1y2)(1z2)+y(1x2)(1z2)+z(1x2)(1y2)(1x2)(1y2)(1z2)=4xyz(1x2)(1y2)(1z2)

x(1y2)(1z2)+y(1x2)(1z2)+z(1x2)(1y2)=4xyz …… (1)

L.H.S

=x(1y2)(1z2)+y(1x2)(1z2)+z(1x2)(1y2)

=x(1z2y2+y2z2)+y(1x2z2+x2z2)+z(1y2x2+y2x2)

=xxz2xy2+xy2z2+yyx2yz2+yx2z2+zzy2zx2+zy2x2

=x+y+zxz2xy2yx2yz2zy2zx2+zy2x2+xy2z2+yx2z2

=x+y+z(xz2+xy2+yx2+yz2+zy2+zx2)+xyz(xy+yz+xz)

=x+y+z(x(xy+xz)+y(xy+yz)+z(yz+zx))+xyz(xy+yz+xz)

Since, xy+yz+zx=1

Therefore,

=x+y+z(x(1yz)+y(1zx)+z(1xy))+xyz

=x+y+z(xxyz+yxyz+zxyz)+xyz

=x+y+zx+xyzy+xyzz+xyz+xyz

=4xyz

Hence, proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon