Consider the given expression.
x1−x2+y1−y2+z1−z2=4xyz(1−x2)(1−y2)(1−z2)
x(1−y2)(1−z2)+y(1−x2)(1−z2)+z(1−x2)(1−y2)(1−x2)(1−y2)(1−z2)=4xyz(1−x2)(1−y2)(1−z2)
x(1−y2)(1−z2)+y(1−x2)(1−z2)+z(1−x2)(1−y2)=4xyz …… (1)
L.H.S
=x(1−y2)(1−z2)+y(1−x2)(1−z2)+z(1−x2)(1−y2)
=x(1−z2−y2+y2z2)+y(1−x2−z2+x2z2)+z(1−y2−x2+y2x2)
=x−xz2−xy2+xy2z2+y−yx2−yz2+yx2z2+z−zy2−zx2+zy2x2
=x+y+z−xz2−xy2−yx2−yz2−zy2−zx2+zy2x2+xy2z2+yx2z2
=x+y+z−(xz2+xy2+yx2+yz2+zy2+zx2)+xyz(xy+yz+xz)
=x+y+z−(x(xy+xz)+y(xy+yz)+z(yz+zx))+xyz(xy+yz+xz)
Since, xy+yz+zx=1
Therefore,
=x+y+z−(x(1−yz)+y(1−zx)+z(1−xy))+xyz
=x+y+z−(x−xyz+y−xyz+z−xyz)+xyz
=x+y+z−x+xyz−y+xyz−z+xyz+xyz
=4xyz
Hence, proved.