Given that,
y=1+x1!+x22!+x33!+......, …… (1)
On differentiation this equation with respect to x and we get,
dydx=ddx(1+x1!+x22!+x33!+......)
dydx=0+1+2x2×1+3x23×2!+4x34×3!+.......
dydx=1+x1!+x22!+x33!+.......
dydx=y by equation (1)
Then,
dydx−y=0
Hence, this is the answer.