If y = (1+x)(1+x2)(1+x4)....(1+x2n), then dydx at x = 0 is
1
Since,y = (1+x)(1+x2)(1+x4)....(1+x2n)
(1−x)y = (1−x2)(1+x2)(1+x4)....(1+x2n)
= (1−x4)(1+x4)...(1+x2n)
.......................................
= (1−x2n)(1+x2n) = 1−x2n+1
∴y = 1−x2n+1(1−x)
∵dydx = (1−x)(−2n+1.x2n−(1−x2n+1)(−1)))(1−x)2
∴dydx∣∣∣x=0 = (1−0)(−2n+1.0)−(1−0)(−1)1
= 1