If y=2logx, thendydx is equal to
2logxlog2
2logx×log2
2logxx
2logx×log2x
Explanation for the correct answer:
y=2logx
Taking logarithm on both sides we get
logy=log2logx
⇒logy=logx×log2 ...[∵logam=m×loga]
Differentiating with respect to x on both sides we get
⇒1y×dydx=log21x
⇒ dydx=y×log21x
Substituting the value of y=2logx we get
⇒ dydx=2logx×log2x
Hence, option (D) is the correct option.
If dx+dy=(x+y)(dx-dy), then log(x+y) is equal to