Given: y+5[x]=1 and 2[x+2]+7=[x]
Applying the property, [x±n]=[x]±n,n∈Z.
⇒[x+2]=[x]+2
Substituting this in the above equation we get,
2([x]+2)+7=[x]
⇒2[x]+4+7=[x]
⇒[x]=−11
⇒[x]≤x<[x]+1...(a)
⇒−11≤x<−11+1
⇒−11≤x<−10
Substituting this in the given equation we get,
y+5[x]=1
⇒y+5(−11)=1
⇒y=1+55=56
⇒y2=562=28
Adding y2 to the above inequality we get,
⇒−11+28≤y2+x<−10+28
⇒17≤y2+x<18
By comparing with the relation (a),
[y2+x]=17