The correct option is
B y.ax.logay=axy
taking logarithm on both sides
logy=xyloga
again we take logarithm on both sides
loglogy=y(logx)+logloga
taking derivative on both sides w.r. t x
1logy.1y.dydx=dydxlogx+y.1x+0
⇒dydx(1ylogy−logx)=yx⇒dydx(1−ylogx.logyylogy)=yx
⇒dydx=y2logyx(1−ylogx.logy)