The correct option is A 0
Given, y=cos(logx)−bsin(logx)
On differentiating w.r.t. x, we get
dydx=a[−sin(logx)]x−bcos(logx)x
=−[asin(logx)]+bcos(logx)x
⇒xdydx=−[asin(logx)+bcos(logx)]
Again, on differentiating w.r.t. x, we get
xd2ydx2+dydx=−[acos(logx)x−bsin(logx)x]=−yx
⇒x2d2ydx2+xdydx+y=0