1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Evaluation of a Determinant
If y=cossin x...
Question
If y = cos (sin x
2
), then
d
y
d
x
at
x
=
π
2
is equal to ______________________.
Open in App
Solution
y
=
cos
sin
x
2
Differentiating both sides with respect to x, we get
d
y
d
x
=
d
d
x
cos
sin
x
2
⇒
d
y
d
x
=
-
sin
sin
x
2
×
d
d
x
sin
x
2
⇒
d
y
d
x
=
-
sin
sin
x
2
×
cos
x
2
×
d
d
x
x
2
⇒
d
y
d
x
=
-
sin
sin
x
2
×
cos
x
2
×
2
x
⇒
d
y
d
x
=
-
2
x
cos
x
2
sin
sin
x
2
Putting
x
=
π
2
, we get
d
y
d
x
x
=
π
2
=
-
2
×
π
2
×
cos
π
2
2
sin
sin
π
2
2
⇒
d
y
d
x
x
=
π
2
=
-
2
×
π
2
×
cos
π
2
×
sin
sin
π
2
⇒
d
y
d
x
x
=
π
2
=
-
2
×
π
2
×
0
×
sin
1
⇒
d
y
d
x
x
=
π
2
=
0
Thus,
d
y
d
x
at
x
=
π
2
is 0.
If y = cos (sin x
2
), then
d
y
d
x
at
x
=
π
2
is equal to
___0___
.
Suggest Corrections
0
Similar questions
Q.
If
y
=
√
1
−
cos
2
x
1
+
cos
2
x
,
x
∈
(
0
,
π
2
)
∪
(
π
2
,
π
)
, then
d
y
d
x
is equal to