If y=(cosx2)2, then dydx is equal to ?
-4xsin2x2
-xsinx2
-2xsin2x2
-xcos2x2
Explanation for the correct option:
Finding the dydx:
Given that,
y=(cosx2)2
Differentiate the given function with respect to x:
dydx=2cosx2×-sinx2×2x[∵dcosxadx=asinx·xa-1,ddxxn=nxn-1]=-2x2sinx2cosx2=-2xsin2x2[∵sin2A=2sinAcosA]
Hence, option (C) is correct.
If dx+dy=(x+y)(dx-dy), then log(x+y) is equal to