If y=cos23x2-sin23x2, then d2ydx2is
9y
-9y
3√(1–y2)
-3√(1–y2)
Explanation for the correct option:
Step 1: Find the value of dydx
Given: y=cos23x2-sin23x2
We know that cos2x–sin2x=cos2x
So,
y=cos23x2y=cos3x
Now, differentiate with respect to x
dydx=-3sin3x[∵ddx(cosx)=-sinx]
Step 2: Find the value of d2ydx2
Again differentiate again with respect to x
Then,
d2ydx2=-9cos3x[∵dsinxdx=cosx]d2ydx2=-9y
Hence, the correct option is B.