The correct option is C 8(xcosx−sinx)+4(2x+cosx)2
We have,
y=4sinx2x+cosx
Let,
u=4sinx and v=2x+cosx
dudx=4cosx and dvdx=2−sinx
Using quotient rule:
dydx=d(uv)dx=vdudx−udvdxv2
=(2x+cosx)(4cosx)−(4sinx)(2−sinx)(2x+cosx)2
=8(xcosx−sinx)+4(cos2x+sin2x)(2x+cosx)2
=8(xcosx−sinx)+4(2x+cosx)2