y=ax2(x−a)(x−b)(x−c)+bx(x−b)(x−c)+cx−c+1
⇒y=ax2(x−a)(x−b)(x−c)+bx(x−b)(x−c)+(c+x−cx−c)
⇒y=ax2(x−a)(x−b)(x−c)+bx(x−b)(x−c)+xx−c
⇒y=ax2(x−a)(x−b)(x−c)+bx+x(x−b)(x−b)(x−c)
⇒y=ax2(x−a)(x−b)(x−c)+x2(x−b)(x−c)
⇒y=ax2+x2(x−a)(x−a)(x−b)(x−c)
⇒y=x3(x−a)(x−b)(x−c)
⇒logy=log[x3(x−a)(x−b)(x−c)]
⇒logy=3logx−[log(x−a)+log(x−b)+log(x−c)]
Differentiate w.r.t x, we get
1ydydx=3x−[1x−a+1x−b+1x−c]
dydx=y[(1x−1x−a)+(1x−1x−b)+(1x−1x−c)]
dydx=y[−ax(x−a)−bx(x−b)−cx(x−c)]
dydx=yx[−ax−a−bx−b−cx−c]
dydx=yx[aa−x+bb−x+cc−x]