wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=ax2(xa)(xb)(xc)+bx(xb)(xc)+cxc+1 then prove that dydx=yx[aax+bbx+ccx]

Open in App
Solution

y=ax2(xa)(xb)(xc)+bx(xb)(xc)+cxc+1

y=ax2(xa)(xb)(xc)+bx(xb)(xc)+(c+xcxc)

y=ax2(xa)(xb)(xc)+bx(xb)(xc)+xxc

y=ax2(xa)(xb)(xc)+bx+x(xb)(xb)(xc)

y=ax2(xa)(xb)(xc)+x2(xb)(xc)

y=ax2+x2(xa)(xa)(xb)(xc)

y=x3(xa)(xb)(xc)

logy=log[x3(xa)(xb)(xc)]

logy=3logx[log(xa)+log(xb)+log(xc)]

Differentiate w.r.t x, we get

1ydydx=3x[1xa+1xb+1xc]

dydx=y[(1x1xa)+(1x1xb)+(1x1xc)]

dydx=y[ax(xa)bx(xb)cx(xc)]

dydx=yx[axabxbcxc]

dydx=yx[aax+bbx+ccx]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Indeterminant Forms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon