Consider the given function.
y=sin−1x√1−x2
On differentiating both sides w.r.t x, we get
dydx=(√1−x2)×1√1−x2−sin−1x×12√1−x2×−2x(√1−x2)2
dydx=1+xsin−1x√1−x21−x2
dydx=1+xy1−x2
(1−x2)dydx=1+xy
(1−x2)dydx−xy=1
Hence, proved