y=√1−x√1+x
Differentiating with respect to x, we get
dydx=12(1−x1+x)1/2−1×ddx1−x1+x
=12√1+x1−x×(1+x)(−1)−(1−x)(1)(1+x)2
=12√1+x1−x×−1−x−1+x(1+x)2
dydx=−√1+x1−x×1(1+x)2
Multiplying both sides by (1−x2)
(1−x2)dydx=−√1+x1−x×1(1+x)2(1−x2)
(1−x2)dydx=−√1−x1+x
⇒(1−x2)dydx=−y
∴(1−x2)dydx+y=0 (proved)