wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If y=1x1+x, prove that (1x2)dydx+y=0

Open in App
Solution

y=1x1+x
Differentiating with respect to x, we get
dydx=12(1x1+x)1/21×ddx1x1+x
=121+x1x×(1+x)(1)(1x)(1)(1+x)2
=121+x1x×1x1+x(1+x)2
dydx=1+x1x×1(1+x)2
Multiplying both sides by (1x2)
(1x2)dydx=1+x1x×1(1+x)2(1x2)
(1x2)dydx=1x1+x
(1x2)dydx=y
(1x2)dydx+y=0 (proved)

flag
Suggest Corrections
thumbs-up
18
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon