The correct option is
B (1−y)yQ. If y=xx+2 then xdydx=?
Soln⇒ We have y=xx+2
So, y(x+2)−x=0
(y−1)x=−2y
x=−2yy−1=2y1−y
now, differentiate y wrt x we get
dydx=(x+2)(1)−(x)(1+0)(x+2)2
dydx=2(x+2)2
multiply x2 on both side we gets
x2dydx=2x2(x+2)2
x(2y1−y)dydx=2y2
xdydx=2y2(2y1−y)
xdydx=y(1−y)
So, xdydx=(1−y)y