1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Higher Order Derivatives
If y= e asi...
Question
If
y
=
e
a
sin
−
1
x
then prove that
(
1
−
x
2
)
y
2
−
x
y
1
−
a
2
y
=
0
, where
y
1
and
y
2
are first and second order derivatives of
y
respectively.
Open in App
Solution
y
=
e
a
sin
−
1
x
∴
y
1
=
d
(
e
a
sin
−
1
x
)
d
x
=
e
a
sin
−
1
x
d
(
a
sin
−
1
x
)
d
x
=
a
e
a
sin
−
1
x
1
√
1
−
x
2
=
a
y
(
1
−
x
2
)
0.5
∴
y
2
=
y
1
d
x
=
(
a
e
a
sin
−
1
x
1
√
1
−
x
2
)
d
x
∴
y
2
=
a
⎡
⎢ ⎢ ⎢ ⎢
⎣
e
a
sin
−
1
x
d
1
√
1
−
x
2
d
x
+
1
√
1
−
x
2
d
e
a
sin
−
1
x
d
x
⎤
⎥ ⎥ ⎥ ⎥
⎦
∴
y
2
=
a
[
e
a
sin
−
1
x
−
1
2
(
√
1
−
x
2
)
3
(
−
2
x
)
+
y
1
√
1
−
x
2
]
∴
y
2
=
a
[
x
y
(
1
−
x
2
)
1.5
+
y
1
√
1
−
x
2
]
Now, multiply by
(
1
−
x
2
)
on both sides
∴
(
1
−
x
2
)
y
2
=
x
y
1
+
a
y
1
√
1
−
x
2
(substituting
y
1
)
∴
(
1
−
x
2
)
y
2
=
x
y
1
+
a
2
y
(
1
−
x
2
)
0.5
√
1
−
x
2
∴
(
1
−
x
2
)
y
2
=
x
y
1
+
a
2
y
∴
(
1
−
x
2
)
y
2
−
x
y
1
−
a
2
y
=
0
Hence, proved.
Suggest Corrections
0
Similar questions
Q.
Let
y
=
sin
−
1
x
then prove that
(
1
−
x
2
)
y
2
−
x
y
1
=
0
. Where
y
1
and
y
2
are first and second order derivatives of
y
with respect to
x
respectively.
Q.
If
y
=
1
2
(
sin
−
1
x
)
2
, then find
(
1
−
x
2
)
y
2
−
x
y
1
.
Where
y
1
and
y
2
denote first and second derivatives of
y
respectively.
Q.
Let
y
=
sin
−
1
x
, then find
(
1
−
x
2
)
y
2
−
x
y
1
.
Where
y
1
and
y
2
denote the first and second order derivatives respectively.
Q.
If
y
=
sin
(
a
sin
−
1
x
)
then prove that
(
1
−
x
2
)
y
2
−
x
y
1
+
a
2
y
=
0
Q.
If
x
=
sin
1
a
log
y
, show that (1 − x
2
)y
2
− xy
1
− a
2
y = 0.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Higher Order Derivatives
MATHEMATICS
Watch in App
Explore more
Higher Order Derivatives
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app