If y=e2xcosxxsinx, then dydxis equal to ?
e2x(2x-1)cotx–xcosec2xx2
e2x(2x-1)cotx–cosec2xx2
e2x(2x-1)cotx+cosec2xx2
none of these
Explanation for the correct option:
Find the value of dydx :
Given,
y=e2xcosxxsinx
Now, differentiate the given function with respect to x
dydx=xsinxddxe2xcosx–e2xcosxddxxsinx(xsinx)2[∵ddxuv=vdudx-udvdxv2]=xsinx(e2x×2×cosx–e2xsinx)–e2xcosx(sinx+xcosx)(xsinx)2[∵dexdx=ex,dsinxdx=cosx]=x2sinxcosxe2x–e2xxsin2x–e2xcosxsinx–e2xxcos2x(xsinx)2=xsin2xe2x–xe2x(sin2x+cos2x)–e2xsinxcosx(xsinx)2=xe2xsin2x–xe2x–e2xsinxcosx(xsinx)2=2xe2xcotx–xe2xcosec2x–e2xcotxx2=e2x2xcotx–xcosec2x–cotxx2=e2x(2x-1)cotx–xcosec2xx2
Hence, the correct option is A.
If dx+dy=(x+y)(dx-dy), then log(x+y) is equal to