wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If y=e2xcosxxsinx, then dydxis equal to ?


A

e2x(2x-1)cotxxcosec2xx2

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

e2x(2x-1)cotxcosec2xx2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

e2x(2x-1)cotx+cosec2xx2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

none of these

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A

e2x(2x-1)cotxxcosec2xx2


Explanation for the correct option:

Find the value of dydx :

Given,

y=e2xcosxxsinx

Now, differentiate the given function with respect to x

dydx=xsinxddxe2xcosxe2xcosxddxxsinx(xsinx)2[ddxuv=vdudx-udvdxv2]=xsinx(e2x×2×cosxe2xsinx)e2xcosx(sinx+xcosx)(xsinx)2[dexdx=ex,dsinxdx=cosx]=x2sinxcosxe2xe2xxsin2xe2xcosxsinxe2xxcos2x(xsinx)2=xsin2xe2xxe2x(sin2x+cos2x)e2xsinxcosx(xsinx)2=xe2xsin2xxe2xe2xsinxcosx(xsinx)2=2xe2xcotxxe2xcosec2xe2xcotxx2=e2x2xcotxxcosec2xcotxx2=e2x(2x-1)cotxxcosec2xx2

Hence, the correct option is A.


flag
Suggest Corrections
thumbs-up
15
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon