If y=exlogx, then dydxis
exx
exlogx+1x
exxlogx+1x
exlogx
Explanation for the correct option.
Find the dydx:
Given that, y=exlogx
Differentiate with respect to x using product rule i.e;
d(uv)dx=udvdx+vdudx.
Let u=ex,v=logx.
dydx=ex·1x+logx·ex=ex1x+logx
Hence, option B is correct.