The correct option is A -2
y=sin x+cos xsin x−cos x
Differentiating both sides with respect to x, we get
dydx=(sin x−cos x)×ddx(sin x+cos x)−(sin x+cos x)×ddx(sin x−cos x)(sin x−cos x)2
=(sin x−cos x)×[ddx(sin x)+ddx(cos x)]−(sin x+cos x)×[ddx(sin x)−ddx(cos x)](sin x−cos x)2
=(sin x−cos x)(cos x−sin x)−(sin x+cos x)(2sin x cos x)(sin x−cos x)2
=−(cos2x+sin2x−2cos x sin x)−(sin2x+cos2x+2sin x cos x)(sin x−cos x)2
=−1+2cos x sin x−1−2 sin x cos x(sin x−cos x)2=−2(sin x−cos x)2
Putting x=0, we get
(dydx)x=0=−2(sin 0−cos 0)2=−2(0−1)2=−2
Thus, dydx at x=0 is -2
Hence, the correct answer is option (a).